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Langevin Equation with Multi-Poissonian Noise 
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A general master equation is shown to be equivalent to a Langevin equation 
whose noise is expressed as a linear superposition of Poissonian random 
variables (multi-Poissonian noise). As typical examples, a birth and death 
process and a Boltzmann-Langevin equation are given. 
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1. INTRODUCTION 

A Langevin equation describing the macroscopic behavior of  a system can be 
derived from a microscopic equation using the projection operation tech- 
nique. ~1-3~ However, it is difficult to determine microscopically the stochastic 
nature of  a random source term in a Langevin equation. It has been assumed 
on the basis of phenomenological arguments to be a Gaussian Markov 
stochastic process in most applications to physical problems. It should be 
stressed that it may be another stochastic process. ~41 We give in this paper 
such an example, which is clear and easy but has not been discussed explicitly 
before. 

2. M U L T I - P O I S S O N I A N  PROCESS 

A stochastic differential equation can be written generally in the form (51 

X( t )  = F(X( t ) ,  t; o~) (1) 
8t 

Here, ~o represents an event or state which is realized folloWing some given 
distribution on the set of  events or states ~. This may be considered as a 
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generalization of a Langevin equation. A Markovian process can be 
characterized by the condition that the infinitesimal increment 

/ ,  t + A ~  

a x ( t )  = j, dt' f (X ( t ' ) ,  t' ; oJ) (2) 

has a distribution dependent only on the instantaneous value of X(t). That is, 
the distribution of AX(t) does not depend on the past details of the process, 
namely, it does not depend on X(s), where s is prior to t. In this case we can 
construct an evolution equation for the distribution function of X(t). For 
example, if AX(t) is Gaussian, the distribution of X(t) is governed by a 
Fokker-Planck equation. We consider in this paper the case in which AX(t) 
is expressed as a linear superposition of Poissonian random variables. Such a 
stochastic process will be called Markovian and multi-Poissonian. We shall 
show that the distribution of X(t) with multi-Poissonian noise obeys a master 
equation and vice versa. The infinitesimal increment AX(t), Eq. (2), will be 
assumed to be of the form 

AX(t) = ~, c~ AJi(X(t)) (3) 

where the AJi(X(t)) are independent Poissonian random variables taking 
nonnegative integral values and have the mean values 

(AJ~(X(t)); X)  = AtW~(X) + O(At 2) (4) 

Here, (... ; X)  is the conditional average with the value of X(t) fixed as X. 
The positive quantity W(X) may depend on X. That is, the probability of 
finding AJ~(X(t)) to be n with the condition X(t) = X is given by 

1 
n~ [ At Wj( X) ]"e- ZXtw'(x) (5) 

so that the characteristic function of AJ~(X(t)) is given by 

(exp [is e AJ~(X(t))] ; X)  = exp{[exp(is e) - 1 ] At W~(X)} 

= 1 + [exp(i~:) - 1] AtW~(X) + O(At 2) (6) 

where At is considered as a positive, infinitesimal number. The nth cumulant 
of AJ~(X(t)) coincides with the first to the first order in At for arbitrary n. 
It should be noted here that a linear superposition of independent Poissonian 
random variables is called compound Poissonian in the literature (see 
appendix). Using Eq. (6), we can derive an equation for the distribution of 
X(t), P(X, t): we first note the equation 

P(X, t) = lira 1 (P(X, t + At) - P(X, t)) 
At--*O I..l,t 

1 I" ds e ~eX~le~x(t ) _ 1)e~eX(o ) --- lim -~. /a--  e-  ~,t (7) 
At--*O l,.XI, J / . . ~  
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where (. . .)  is the average over all possible events. Next from Eqs. (3)-(6) we 
obtain 

(exp[i~: AX(t)] -- 1 ; X)  = I--[ exp([exp(i~:c~) - 1) AtW~(X)} - 1 
i 

= At ~ [exp(i~c,) -- 1 ] W~(JO + O(At 2) (8) 

where we have used the fact that the characteristic function of the sum of  
independent random variables is the product of their characteristic functions. 
Thus we obtain the master equation 

We remark here that any sample function X(t, o~) changes discontinuously in 
time by an amount c~n each time because the AJ~(X(t)) take nonnegative 
integral values only. Therefore, the time derivative in Eq. (1) should be 
interpreted as (1/At) AX(t) where the limit of infinitesimal At is not taken. 
This is assumed implicitly even for the case of Gaussian noise, where any 
sample function is continuous but not differentiable almost everywhere. 

3. R A N D O M  FORCE 

Next, in order to see the relation between the differential form (1) and 
the incremental form (3), we rewrite Eq. (3) in the following Langevin form: 

X(t)  = ~ c~W~(X(t)) + R(t) (10) 
8t 

where W~(X) are defined in Eq. (4). The average of R(t) vanishes and its 
distribution is stochastically independent of  the past process X(s), where 
s < t. The source term R(t) will be called " a  random force." Mathe- 
matically, the quantity R(t) consists of  the 3-functions of time corresponding 
to the discontinuous change in X(t), so that it is convenient to consider the 
increment of R(t) written as 

~ t + At  

AR(t) = dr' R(t') = AX(t) - ~ c~ W~(X(t)) At (11) 
t 

Then the characteristic function of the random increment AR(t) becomes 

s X )  = 1 + At ~ (e~eC~ -- i~ei -- 1)W~(X) + O(At 2) (12) 
i 

The cumulants of  AR(t) are all first order in At, while in the case of  Gaussian 
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noise only the second cumulant is of order At. The time correlation function 
of the random force R(t) should be defined by 

1 
(R(q)R(t2))  = lim lira -=--=--. (AR(q )  AR(t2)) (13) 

Atl-,o ~t2~o &t~zxt2 

where AR(tl) is the increment in the time interval [tl, t~ + Aq I and hR(t2) 
that in [t2, t 2 + At2]. Equation (13) is nonvanishing only when the two time 
intervals overlap. Let At be the overlapping time; then we obtain 

(AR(tl) AR(t2)) = At ~_, c~(W,(X(t))) + O(At z) (14) 
t 

Using the mathematical identity 

1 
lim lim ~ A t  = 3(q - t2) (15) 

Aq-,o ~t~-*o /xtl /xt2 

we find 

(R(tl)R(t2)) = 3(q - t2) ~ c~< W~(X(t))) (16) 
i 

The correlation time of the random force R(t) is infinitesimally small. This is 
because all impacts AJ~(X(t)) in Eq. (3) cause instantaneous changes in X(t) ,  
independent of each other. 

4. BIRTH A N D  DEATH PROCESS 

In the following we give two examples of a multi-Poissonian Markov 
process. For the first example, let X(t )  be a population in the system con- 
sidered with X(t)  changing by integral values when birth or death events 
take place. The incremental change AX(t) is assumed to be multi-Poissonian: 

AX(t) = ~,  r AJ~(X(t)) (17) 
r=4-1,a-2, . . .  

with 

(A Jr(x); x> = At W ( X - +  X + r) + O(At ~) (18) 

where AJ~(X) is the number of birth and death events in which X(t )  changes 
by r. The distribution of X(t)  obviously obeys the following familiar master 
equation 

~ P(X,  t) = ~,  [W(X  - r -+ X ) P ( X  - r, t) - W(X---~ X + r)P(X,  t)] 
Ot 

(19) 

We note that when X(t )  is extensive, that is, proportional to the system size 
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f2, the normalized random force R(t)/f2 becomes Gaussian to leading order 
~2 -1 [exp(i~di) in Eq. (12) can be expanded in cal. (6) 

5. B O L T Z M A N N - L A N G E V I N  E Q U A T I O N  

As the second example, we consider the fluctuating motion of the one- 
body distribution F(r, v, t), the average motion of which obeys the Boltz- 
mann equation. (7-9) Let us consider mutually independent particles under- 
going collisions with randomly distributed scatterers. Their distribution in/z 
space, F(r, v, t), obeys the following Boltzmann-Langevin equation: 

~tF(r ,  v, t) + V.~r F(r, v, t) 

1 / "  -~tJ dr'dv'[-AJ(r,v--~r'v';t) + AJ(r', v ' -+  r, v; t)] (20) 

Here, AJ(r, v -+ r', v'; t) is the number of collisional events taking place in the 
time interval [t, t + At] in which the colliding particle is located at (r, v) 
before the collision and is transferred to (r', v') after the collision. This 
number is assumed to be Poissonian with the mean value 

(AJ(r, v --~ r', v'; t); F(t)) = At 8(r -- r')n~ W(v ~ v')F(r, v, t) (21) 

where ni is the impurity density and W(v ~ v') is the transition probability 
associated with the collision. We note that it is possible to derive Eq. (21) 
microscopically in the limit of small collision duration time. (1~ It is con- 
venient to introduce the characteristic functional 

Q({~7}, t) = (exp[i f dr dv v(r, v)F(r, v, t ) ] )  (22) 

which obeys 

8 t" a 3 
8~ Q + J dr dv ~(r, v )v .~  3~7(r.v) Q 

= f dr dv f dr' n,W(v-+v'){exp[i~(r, v') - iT(r, v)] - 1} 

1 
• i 3r/(r, v) Q (23) 

This can be solved to give 

Q({~},t)=exp(f {exp[i~(r,v)]- l}(F(r,v,t)>drdv) (24) 

If  we divide ~ space into cells, then (24) clearly indicates that the particle 
numbers in cells are independently Poissonian, each with the mean value 
AN = (F(r, v, t)) Ar Av. Some authors have considered the particle number 
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distributions to be Gaussian. (9,11) This is allowed in the following two cases. 
(i) One is the case in which small-angle collisions are so dominant that it is 
allowable to use the following expansion with respect to the velocity change: 

exp[iv(r, v') - iv(r, v)] - 1 

8 
= i(v' - v ) . ~  ~(r, v) 

l ( v _ v , ) (  v v,) 8 8 1 [  8 ]2 2 - :-~ ~-~ ~(r, v) - ~ (v' - v).~-~ "q(r, v) -4- ... 

(25) 

If  we retain only the first three terms in Eq. (25), we readily find that Eq. (23) 
reduces to a Fokker-Planck equation, showing that F(r, v, t) obeys a Gaus- 
sian Markov stochastic process. We can mention as an example electrons 
coupled with acoustic phonons. (ii) The second is the case in which the average 
numbers AN are much greater than unity, since a Poisson distribution 
becomes Gaussian in the limit of a large mean value. It is important to note 
here that there is an arbitrariness in dividing t~ space into cells, so that AN 
may be made much greater than unity by choosing an appropriate cell size. 
Papers based on the Gaussian assumption are thus justified for either of the 
above two cases. 

A Boltzmann-Langevin equation for a system of interacting particles 
takes the following, slightly different form: 

f AF(1, t) + vl.~-~ F(1, t) At = dl '  d2 d2' [AJ~,~,(t) - AJ~2'(t)] (26) 

where 1 = (r~, v~) .... represent points in ~ space and AJ~2"(t) is the number 
of collisions in which two particles are located at 1 and 2 before the collision 
and at t '  and 2' after the collision. This number AJ~'22"(t) is Poissonian with 
the mean value 

<Ay~2'(t); F(t)> = 3(r~ - r2) 3(r~ - rl') 3(rl - r2') 

• W(vl, v2 -+ vl', v2')F(1, t)F(2, t) (27) 

where W(vl, v2-+ vl', v2') is the transition probability associated with the 
binary collision. It should be noted that Eq. (24) is not satisfied when particles 
interact with one another; in this case, log Q may be expanded in powers of 
e ~ - 1 as 

f dr dv (exp[i~(r, v)] - 1}<F(r, v, t)> log Q({~}, t) 

1 drdvfdr' - 1 }  + ~ f dv' {exp[i~/(r, v)] 

x {exp[iv(r', v')] - 1}g(r, v, r', v', t) + ... (28) 
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where g(r, v, r', v', t),.., are the cumulant correlation functions. <12~ If we 
neglect them, the equation for the average {F(r, v, t)) reduces to the usual 
Boltzmann equation. Equations for the cumulant correlation functions form 
an infinite hierarchy of equations when there are collisions between particles. 
The cumulant correlation functions defined by Eq. (28) cannot predict short- 
range correlations (those in the region lr~ - rjl ~< force range), because 
Boltzmann-Langevin equations such as Eq. (26) describe the motion of long- 
wavelength components of the particle density in /~ space (that is, short- 
wavelength components are eliminated by coarse-graining)J 11> However, a 
Boltzmann-Langevin equation for gaseous systems with interactions between 
particles can predict long-range correlations extending much farther than the 
force range in nonequilibrium states. The present author has examined the 
long-range pair correlation in the presence of a steady laminar flow by 
constructing the equation for g.<10~ 

A P P E N D I X  

The increment 2xX(t), Eq. (3), can be considered to consist of instan- 
taneous changes caused by independent impacts such as bombardment of 
physical particles. The number of such impacts has the Poisson distribution 
with the mean value 

AN = At ~, W~(X) (A1) 

and the distribution of the change x caused by one impact is common to all 
impacts and is given by 

1 ~. 3(x - c)W~(X) (A2) P(x; x)  =- ~ ~ ( x )  

Denoting the characteristic function of P(x; X) by f(~:; X), we obtain the 
characteristic function of the total change in the form 

(AN) ~ 
(exp[i~: AX(t)]; X) = ~ ~ [exp(- AN)]f(~:; X)" 

= exp[(f(~; X) - 1)AN] (A3) 

which is Eq. (8). Here, f(~; X)" is the characteristic function of the sum of n 
independent changes. In the literature the distribution whose characteristic 
function takes the form (A3) is called compound Poissonian, wheref(~) may 
be a characteristic function of any distribution, and the stochastic process 
X(t) with W~ independent of X is called a compound Poisson process. (13~ 
That is, a multi-Poissonian random variable, which is expressed as a linear 
superposition of independent Poissonian random variables, is compound 
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Poissonian.  However, we have allowed W~(X) to depend on X, so tha t  the 
characteristic funct ion of AX(t) ,  Eq. (8), coincides with that  of  the compound  
Poissonian dis tr ibut ion only to the first order in At. 
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